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ABSTRACT. A model for the amplitude and phase of ultrasonic tone-bursts incident on 

adherend-adhesive interfaces is developed for both reflected and transmitted waves.   The 

model parameters include the interfacial stiffness constants, which characterize the elastic 

properties of idealized adherend-adhesive interfaces having a continuum of bonds.  The 

ultrasonic model is linked to the more realistic physico-chemical model of adhesive 

bonding via a scaling equation that establishes the relationship between the interfacial 

stiffness constants of the ultrasonic model and the fraction of actual bonds in the physico-

chemical model.  The link to the physico-chemical model enables a quantitative assessment 

of the absolute bond strength.  The ultrasonic model and scaling equation are applied to the 

simulation assessment of the absolute bond strength of two aluminum alloy adherends 

joined by an epoxy adhesive.  Model input is obtained from the calculated phase of tone-

bursts reflected from the adherend-adhesive interfaces as a function of the interfacial 

stiffness constants.  The simulation shows that the reflected phase is dominated by the first 

interface encountered by the incident tone-burst with little contribution from the second 

interface.  The simulation also shows that the accuracy in assessing the adhesive bond 

strength depends on the sensitivity of the reflected phase to variations in the interfacial 

stiffness constants, reflecting in part the nonlinearity of the scaling relationship.   
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I. INTRODUCTION 

Because of their high strength-to-weight ratio and their flexibility to meet design 

and manufacturing needs, composite materials such as carbon fiber reinforced polymers 

are being used more frequently in the aerospace and automotive industries to replace 

heavier metal components.  Since bolting and riveting are problematic in joining two 

composite components, the preferred method of joining is adhesive bonding.  Of critical 

importance is the ability of the adhesive to transfer an applied load between the joined 

composite adherends.  The load transfer characteristics is determined by the integrity and 

quality of the bond between the adhesive and the adherend.  Surface preparation anomalies 

in manufacturing may cause an adhesive bond to suffer a strength reduction or lead to an 

increased susceptibility of bonded interfaces to an environmental degradation while the 

piece is in service.   Mechanisms of environmental interface degradation include loss of 

molecular bonds, which can result in interfacial strength reduction, the initiation and 

growth of micro-cracks, and eventually to failure.  A quantitative nondestructive 

assessment of bond integrity is thus crucial to the use of joined composites in more 

advanced structures, especially where safety issues become more pressing.     

Since ultrasound provides a direct mechanical means to interrogate bond integrity, 

many nondestructive techniques have centered on exploiting various properties of 

ultrasonic interactions with bonded interfaces to assess bond quality.  Conventional 

ultrasonic amplitude measurements are often used to detect major interface degradation 

such as delaminations, but they are relatively ineffective in measuring very weak or 
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‘kissing’ bonds, since the wavelengths are generally too long compared to the thickness of 

the adhesive interface to provide an adequate signal-to-noise ratio.  Angle beam ultrasonic 

spectroscopy (ABUS) [1-3] quantifies bond quality by measuring the shift in the minimum 

of the ultrasonic reflection frequency spectrum for both normal incidence and oblique 

incidence waves on bonded interfaces.  Characteristic frequencies associated with 

adherend-adhesive interface stiffness parameters, embedded in the longitudinal and 

transverse ultrasonic reflection coefficients, have been used to assess bond quality [4].  

Ultrasonic phase measurements have been used to assess the quality of titanium diffusion 

bonds [5,6].  And ultrasonic phase measurements of ‘kissing bonds’, simulated by dry 

contact interfaces, have proved promising in studies that show measurable phase shifts for 

different dry contacting surfaces [7].  The ability of phase measurements to assess weak 

and kissing bonds begs further exploration of phase-based methods for assessing the 

quality and integrity of adhesive bonds.   

Broadband ultrasonic pulses are often used in phase measurements, where phase 

information is obtained from a Fourier analysis of the pulses, but phase-based methods 

require a high signal-to-noise ratio that is not generally achieved with broadband pulses.  

In contrast, measurement systems using narrow-band ultrasonic tone-bursts (gated 

continuous waves) generally have the necessary signal-to-noise ratio for reliable 

measurements.  Further, ultrasonic phase-measuring systems based on constant frequency 

pulse phase-locked loop (CFPPLL) technology have the additional advantage that phase 

variations can be measured to parts in 109 [8].  A recent application [9] reveals that “the 

sensitivity of the CFPPLL instrument allows detection of bond pathologies that have been 

previously difficult-to-detect.”      
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Ultrasonic measurements are based on a continuum model of adherend-adhesive 

interfaces where perfect adhesive bonding corresponds to an infinite array of bonds 

covering a finite area of adherend-adhesive contact.  Realistically, the finite dimensions of 

atoms prevent the occurrence of an infinite array of bond sites.  Adhesive bonding is more 

accurately described by the physico-chemical model of adhesion [10,11].  To obtain a truly 

quantitative assessment of adhesive bond strength a scaling equation is introduced in the 

present work to link ultrasonic measurements to the physico-chemical model.          

The focus of the present work is to develop a model for assessing bond quality 

using constant frequency narrow-band phase-based techniques.  Section II begins with a 

derivation of ultrasonic amplitude and phase contributions from adhesively bonded 

interfaces for normal incidence of plane waves on the bond-line.  Section III shows the 

connection between phase-based measurements and the physico-chemical model of 

adhesive bond strength.  Section IV applies the present model to the simulation assessment 

of the adhesive bond strength of two aluminum alloy 6061 adherends joined by an epoxy 

adhesive.  Model input is obtained from the calculated phase of the reflected tone-bursts 

from the adherend-adhesive interfaces as a function of the interfacial stiffness constants.   

 

II. ULTRASONIC AMPLITUDE AND PHASE CONTRIBUTIONS FROM BONDED 

INTERFACES 

 The amplitude and phase of an ultrasonic wave is derived for the case of a wave 

passing through adhesive material joining two monolithic structures (the adherends) of 

different composition.  It is assumed that for gated ultrasonic continuous waves (tone-

bursts) each monolithic structure can be modeled as semi-infinite and separated by the 
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thickness L of the adhesive joint as shown in Fig.1.  The adherends are labeled (1) and (3) 

in Fig. 1 and the adhesive is labeled (2).  For tone-bursts much longer than the thickness of 

the adhesive, but shorter than the thickness of either adherend, it is appropriate to consider 

a continuous traveling wave of displacement amplitude Ai incident from medium 1 

(adherend), having mass density1 and phase velocity c1 onto the boundary at the spatial 

position x = 0 between medium 1 and medium 2 (the adhesive).  The adhesive has mass 

density2, phase velocity c2, and thickness L.  Assume a continuous wave of the form 

𝐴𝑖𝑒
−𝛼2𝑥𝑐𝑜𝑠(𝑘2𝑥 − 𝜔𝑡) = 𝑅𝑒[𝐴𝑖𝑒

−𝛼2𝑥𝑒𝑖(𝑘2𝑥−𝜔𝑡)] propagating in medium 2, where 2 is 

the attenuation coefficient in medium 2, x = 0 is the spatial position of the interface along  

 

Fig.1. Schematic of acoustic wave transmission and reflection amplitudes at the boundaries x = 0 and x = L 

between the adhesive (medium 2) and the adherends (media 1 and 3). T12, T21, and T23 are transmission 

coefficients; R12 and R21 are reflection coefficients. The transmission and reflection coefficients account for 

imperfect bonding between the adhesive and the adherends by means of interfacial stiffness constants (see 

text).  𝑘2
′ = 𝑘2 + 𝑖𝛼2 , where k2 is the wave number in medium 2 and 2 is the attenuation coefficient. 

 

 



6 

 

the x direction between medium 1 and medium 2,  is the angular frequency, t is time, k2 

= /c2 , and c2 is the phase velocity.  The spatial position x = L corresponds to that of the 

interface between medium 2 and medium 3, having mass density3 and phase velocity c3.  

The wave is partially reflected and partially transmitted upon each encounter with the 

boundaries at x = 0 and x = L.  T12 and T21 are the transmission coefficients between 

medium 1 and medium 2, T23 is the transmission coefficient between medium 2 and 

medium 3, and R12 and R21 are the reflection coefficients between medium 1 and medium 

2. 

 Tatersall [12] has shown that the acoustic transmission coefficient between medium 

a and medium b for waves incident from medium a is given as 

 

                                             𝑇𝑎𝑏 =
2𝑍𝑎

𝑍𝑎+𝑍𝑏+𝑖𝜔(
𝑍𝑎𝑍𝑏
𝐾𝑎𝑏

)
= |𝑇𝑎𝑏|𝑒

𝜃𝑎𝑏    (1) 

where 

                                   |𝑇𝑎𝑏| =
2𝐾𝑎𝑏𝑍𝑎

[𝐾𝑎𝑏
2 (𝑍𝑎+𝑍𝑏)

2+(𝜔𝑍𝑎𝑍𝑏)
2]
1/2   ,    (2) 

 

                                                   𝜃𝑎𝑏 = − tan−1
𝜔𝑍𝑎𝑍𝑏

𝐾𝑎𝑏(𝑍𝑎+𝑍𝑏)
   ,   (3) 

 Za = aca is the acoustic impedance of medium a, a is the mass density, and ca is the sound 

velocity.  Zb = bcb is the acoustic impedance of medium b, b is the mass density, and cb 

is the sound velocity.  𝐾𝑎𝑏 is the interfacial spring stiffness constant between media a and 

b, and is a measure of the quality of the adhesive bond.  For perfect bonds it is assumed 

that 𝐾𝑎𝑏  = ∞.  Eq.(1) then reduces to the conventional transmission coefficient  𝑇𝑎𝑏 =

2𝑍𝑎

𝑍𝑎+𝑍𝑏
.  For zero bonding it is assumed that 𝐾𝑎𝑏 = 0.   Eq.(1) then reduces to Tab  = 0. 
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 The reflection coefficient between medium a and medium b for waves incident 

from medium a is given as [12] 

 

                        𝑅𝑎𝑏 =
𝑍𝑎−𝑍𝑏+𝑖𝜔(

𝑍𝑎𝑍𝑏
𝐾𝑎𝑏

)

𝑍𝑎+𝑍𝑏+𝑖𝜔(
𝑍𝑎𝑍𝑏
𝐾𝑎𝑏

)
= |𝑅𝑎𝑏|𝑒

𝜙𝑎𝑏   (4) 

where 

                                     |𝑅𝑎𝑏| = [
𝐾𝑎𝑏
2 (𝑍𝑎−𝑍𝑏)

2+(𝜔𝑍𝑎𝑍𝑏)
2

𝐾𝑎𝑏
2 (𝑍𝑎+𝑍𝑏)

2+(𝜔𝑍𝑎𝑍𝑏)
2]
1/2

   ,    (5) 

and 

                    𝜙𝑎𝑏 = tan−1
2𝜔𝑍𝑎𝑍𝑏

2𝐾𝑎𝑏

𝐾𝑎𝑏
2 (𝑍𝑎

2−𝑍𝑏
2)+(𝜔𝑍𝑎𝑍𝑏)

2  .   (6) 

 

For perfect adhesive bonding 𝐾𝑎𝑏 = ∞ and Eq.(4) reduces to the conventional reflection 

coefficient 𝑅𝑎𝑏 =
𝑍𝑎−𝑍𝑏

𝑍𝑎+𝑍𝑏
 .  For zero bonding 𝐾𝑎𝑏  = 0 and Eq.(4) reduces to Rab = 1, as 

expected.  

 As indicated in Fig.1, the wave transmitted from medium 1 through medium 2 into 

medium 3 is comprised of the sum of all waves transmitted into medium 3 after multiple 

partial reflections and transmissions between the boundaries x = 0 and x = L in medium 2.  

The wave transmitted into medium 3 at x = L is 𝐴𝑡𝑐𝑜𝑠(𝑘3𝑥 − 𝜔𝑡) = 𝑅𝑒[𝐴𝑡𝑒
𝑖(𝑘3𝑥−𝜔𝑡)] 

where the complex transmission amplitude At is the sum of the complex amplitudes of 

waves partially transmitted into medium 3.  The complex wave transmission amplitudes 

resulting from multiple reflections in medium 2 are shown on the right side of Fig.1, where  

𝑘2
′ = 𝑘2 + 𝑖𝛼2 , k2 is the wave number in medium 2 and 2 is the attenuation coefficient.  
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The sum of the complex amplitudes At in terms of the incident wave amplitude Ai is 

obtained from Fig.1 as 

 

                                 
𝐴𝑡

𝐴𝑖
= 𝑇12𝑇23𝑒

−𝛼2𝐿𝑒𝑖𝑘2𝐿∑ (𝑅21𝑅23𝑒
−2𝛼2𝐿𝑒𝑖2𝑘2𝐿)

𝑛∞
𝑛=0  

                                               =
𝑇12𝑇23𝑒

−𝛼2𝐿𝑒𝑖𝑘2𝐿

1−𝑅21𝑅23𝑒
−2𝛼2𝐿𝑒𝑖2𝑘2𝐿

= |𝑇𝑡|𝑒
𝑖𝜀   .         (7) 

 

The magnitude of the effective transmission coefficient 

 

                            |𝑇𝑡| = |𝑇12||𝑇23|𝑒
−𝛼2𝐿

𝐴

𝐵
  ,    (8) 

where 

            |𝑇12| =
2𝐾12𝑍1

[𝐾12
2 (𝑍1+𝑍2)2+(𝜔𝑍1𝑍2)2]

1/2  ,   (9) 

 

            |𝑇23| =
2𝐾23𝑍2

[𝐾23
2 (𝑍2+𝑍3)2+(𝜔𝑍2𝑍3)2]

1/2  ,   (10) 

 

𝐴 = {[cos(𝑘2𝐿 + 𝜃12 + 𝜃23) − |𝑅21||𝑅23|exp⁡(−2𝛼2𝐿) cos(𝑘2𝐿+𝜙21 + 𝜙23 − 𝜃12 −

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜃23)]
2 + [sin(𝑘2𝐿 + 𝜃12 + 𝜃23) + |𝑅21||𝑅23|exp⁡(−2𝛼2𝐿) sin( 𝑘2𝐿+𝜙21 + 𝜙23 −

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜃12 − 𝜃23)]
2}1/2  ,        (11) 

 

     𝐵 = 1 + |𝑅21|
2|𝑅23|

2𝑒−4𝛼2𝐿 − 2|𝑅21||𝑅23|𝑒
−2𝛼2𝐿 cos(2𝑘2𝐿+𝜙21 + 𝜙23)  ,    (12) 

 

                            |𝑅21| = [
(𝑍2−𝑍1)

2𝐾12
2 +𝜔2𝑍2

2𝑍1
2

(𝑍2+𝑍1)2𝐾12
2 +𝜔2𝑍2

2𝑍1
2]
1/2

  ,   (13) 
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                                 |𝑅23| = [
(𝑍2−𝑍3)

2𝐾23
2 +𝜔2𝑍2

2𝑍3
2

(𝑍2+𝑍3)2𝐾23
2 +𝜔2𝑍2

2𝑍3
2]
1/2

    ,   (14) 

 

K12 is the interfacial spring constant between medium 1 and medium 2, K23 is the interfacial 

spring constant between medium 2 and medium 3, 

 

    𝜃12 = − tan−1
𝜔𝑍1𝑍2

𝐾12(𝑍1+𝑍2)
  ,    (15) 

 

                                                  𝜃23 = − tan−1
𝜔𝑍2𝑍3

𝐾23(𝑍2+𝑍3)
  ,    (16) 

 

           𝜙21 = tan−1
2𝜔𝐾12𝑍2𝑍1

2

𝐾12
2 (𝑍2

2−𝑍1
2)−𝜔2𝑍1

2𝑍2
2  ,   (17) 

and 

                                             𝜙23 = tan−1
2𝜔𝐾23𝑍2𝑍3

2

𝐾23
2 (𝑍2

2−𝑍3
2)−𝜔2𝑍2

2𝑍3
2  .   (18) 

 

 The phase  of the transmitted wave given in Eq.(7) is obtained as 

 

        𝜀 = tan−1
sin(𝑘2𝐿+𝜃12+𝜃23)+|𝑅21||𝑅23|exp⁡(−2𝛼2𝐿) sin( 𝑘2𝐿+𝜙21+𝜙23−⁡𝜃12−𝜃23)

cos(𝑘2𝐿+𝜃12+𝜃23)−|𝑅21||𝑅23|exp⁡(−2𝛼2𝐿) cos(𝑘2𝐿+𝜙21+𝜙23−𝜃12−⁡𝜃23)
  . (19) 

 

The wave reflected back into medium 1 from an incident wave of amplitude Ai 

results from multiple partial reflections from the interfaces at x = 0 and x = L bounding 

medium 2. The wave reflected into medium 1 at x = 0 is 𝐴𝑟𝑐𝑜𝑠(−𝑘1𝑥 − 𝜔𝑡) =
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𝑅𝑒[𝐴𝑟𝑒
−𝑖(𝑘1𝑥+𝜔𝑡)]  where Ar the complex reflection amplitude. The complex wave 

reflection amplitudes resulting from multiple reflections from the boundaries of medium 2 

are shown on the left side of Fig.1.  The sum of the complex reflection amplitudes Ar in 

terms of the incident wave amplitude Ai is obtained from Fig.1 as 

 

         
𝐴𝑟

𝐴𝑖
= 𝑅12+𝑇21𝑇12𝑅23𝑒

−2𝛼2𝐿𝑒𝑖2𝑘2𝐿∑ (𝑅21𝑅23𝑒
−2𝛼2𝐿𝑒𝑖2𝑘2𝐿)

𝑛∞
𝑛=0  

        = 𝑅12 +
𝑇21𝑇12𝑅23𝑒

−2𝛼2𝐿𝑒𝑖2𝑘2𝐿

1−𝑅21𝑅23𝑒
−2𝛼2𝐿𝑒𝑖2𝑘2𝐿

= |𝑅𝑟|𝑒
𝑖𝛾   (20) 

 

where the magnitude of the reflected wave is 

 

                             |𝑅𝑟| =
√𝐶2+𝐷2

1+𝑏2−2𝑏 cosΛ
 ,    (21) 

 

               𝐶 = ⁡𝑎[cos 𝜒 − 𝑏 cos(𝜒 − Λ)] + |𝑅12|(1 + 𝑏2 − 2𝑏 cos Λ) cos𝜙12  , (22) 

 

   𝐷 = 𝑎[sin 𝜒 − 𝑏 sin(𝜒 − Λ)] + |𝑅12|(1 + 𝑏2 − 2𝑏 cos Λ) sin𝜙12  ,        (23) 

 

      𝑎 = |𝑇21||𝑇12||𝑅23|𝑒
−2𝛼2𝐿  ,   (24) 

 

          𝑏 = |𝑅21||𝑅23|𝑒
−2𝛼2𝐿    ,    (25) 

 

                𝜒 = 2𝑘2𝐿 + 𝜃12 + 𝜃21 + 𝜙23   ,   (26) 
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          Λ = 2𝑘2𝐿 + 𝜙21 +𝜙23      ,   (27) 

 

and the phase of the reflected wave is 

 

    𝛾 = tan−1
𝑎[sin𝜒−𝑏 sin(𝜒−Λ)]+|𝑅12|(1+𝑏

2−2𝑏 cosΛ) sin𝜙12

⁡𝑎[cos𝜒−𝑏 cos(𝜒−Λ)]+|𝑅12|(1+𝑏2−2𝑏 cosΛ) cos𝜙12
   .  (28) 

 

 The total ultrasonic phase 𝜓𝑟𝑒𝑓𝑙𝑒𝑐𝑡 associated with the reflected tone-burst is  

 

                    𝜓𝑟𝑒𝑓𝑙𝑒𝑐𝑡 = 𝛾 + 2(𝜔/𝑐1)𝐿1 + 𝜙𝑡𝑑𝑐𝑟   (29) 

 

where c1 is the sound velocity in medium 1, L1 is the thickness of medium 1,  is the 

ultrasonic angular frequency, and tdcr is the phase contribution from the transducer and 

transducer bond.  The total ultrasonic phase 𝜓𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 associated with the transmitted tone-

burst is  

 

            𝜓𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 = 𝜀 + (𝜔/𝑐1)𝐿1 + (𝜔/𝑐3)𝐿3 + 𝜙𝑡𝑑𝑐𝑟1 + 𝜙𝑡𝑑𝑐𝑟2  (30) 

 

where c3 is the sound velocity in medium 3, L3 is the thickness of medium 3, tdcr1 is the 

phase contribution from the transmitting transducer and transducer bond, and tdcr2 is the 

contribution from the receiving transducer and transducer bond.  For sufficiently thin 

transducer bonds the phase contribution from the transducer bonding material is relatively 

negligible.  When operating at bonded transducer resonance the phase contribution from 
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the transducer is zero.  Thus, when operating at bonded transducer resonance with 

sufficiently thin transducer bonds tdcr ≈ 0.    

      

III. CONNECTION TO PHYSICO-CHEMICAL MODEL OF ADHESIVE STRENGTH  

A. The physico-chemical model 

The physico-chemical model [10,11] of adhesive bond strength treats the adhesive 

interface as a finite array of interatomic bonds with a bond density of N bonds per unit 

interface area.  The local tensile adhesive bond strength 〈𝜎〉 (average tensile force per unit 

area) is quantified by the product of the bond density N (bonds per unit area) and the 

average interatomic binding force per bond 〈𝐹〉 normal to the surface as 〈𝜎〉 = 𝑁〈𝐹〉.  The 

binding force F(r) of a single interatomic bond is a function of the bond interaction length 

r and is calculated from an interatomic potential U(r) as 𝐹(𝑟) = −𝜕𝑈(𝑟)/𝜕𝑟 .  A 

commonly used potential is the Morse potential [13] 

 

           𝑈(𝑟) = 𝑈0[𝑒
−2𝜇(𝑟−𝑟0) − 2𝑒−𝜇(𝑟−𝑟0)] .   (31) 

   

where U0 is the bond dissociation energy, r0 is the equilibrium separation distance between 

the bonded atomic pairs, and  is the ‘shape’ or ‘bond hardness’ parameter.  The maximum 

attractive force 𝐹𝑚𝑎𝑥  occurs for 𝑑𝐹 𝑑𝑟⁄ = 𝑑2𝑈 𝑑𝑟2⁄ = 0  and is obtained for 𝑟 = 𝑟′ =

𝑟0 + (1 𝜇⁄ )𝑙𝑛2.   

The interfacial spring stiffness constant KP-C in the physico-chemical model is 

defined as KP-C = Nk, where k is the force or ‘spring’ constant per interatomic bonding pair.   
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The spring constant k is obtained from the ‘stretching’ frequency 𝜈 of the bonded atoms as 

𝑘 = 4𝜋2𝑚𝑟𝜈
2 , where 𝑚𝑟  is the reduced mass of the atomic pair.  The frequency

   

n  is 

assessed experimentally from far-infrared spectral analysis for a given pair of interacting 

atoms and type of bond, e.g., covalent, ionic, metallic, hydrogen, etc. [14].  The ‘bond 

hardness’ parameter is obtained as 𝜇 = (𝑘 2𝑈0⁄ )1/2 = (𝜈 2𝜋⁄ )(𝑚𝑟 2𝑈0⁄ )1/2. 

At any given moment the adhesive interface consists of an array of N interatomic 

bonds per unit area with the bonds having different interaction lengths r giving rise to 

different interatomic forces F(r).  Let N0 represent the maximum number of possible bonds 

per unit area of adhesive-adherend interface that occur when all possible bonds are intact 

and let N be the number of actual bonds per unit area that occur as the result of (N0 – N) 

disbonds.  The disbonds result, for example, from impact damage or diffusion of moisture 

to the bond sites.  The fraction f = N/N0 of intact interatomic bonds having bond interaction 

lengths between r and (r + dr) is assumed to follow the Weibull distribution W(r,) defined 

as [15]  

                      𝑊(𝑟, 𝛿) =
𝜋

2

𝑟

𝛿2
𝑒
−
𝜋

4

𝑟2

𝛿2    (32) 

 

where ∫ 𝑊(𝑟, 𝛿)𝑑𝑟 = 1
∞

0
 for all values of 𝛿.  The Weibull distribution is commonly used 

to describe systems possessing an array of parallel connections, such as that provided by 

the set of interatomic bonds at an adhesive-adherent interface.  It is noted that the average 

value 〈𝑟〉  of the interatomic interaction lengths r is given as    

 

               〈𝑟〉 = ∫ 𝑟𝑊(𝑟, 𝛿)𝑑𝑟 = 𝛿
∞

0
  .    (33) 

 



14 

 

The parameter 〈𝑟〉 = 𝛿 is thus the average interatomic bond length in the distribution and 

represents the interface separation of the adhesive and adherent. 

 Since 〈𝑟〉 = 𝛿 , it is assumed that the appropriate value of 𝛿  in the Weibull 

distribution corresponding to a separation 〈𝑟〉 = 𝑟′  is 𝑟′  itself.  Thus, the average 

interatomic binding force per bond 〈𝐹〉 is a function of 𝛿 = 𝑟′ and is obtained as 

 

                            〈𝐹(𝛿 = 𝑟′)〉 = ∫ 𝐹(𝑟)𝑊(𝑟, 𝛿 = 𝑟′)𝑑𝑟
∞

0
 .  (34) 

 

The adhesive tensile strength 〈𝜎〉 is thus calculated from the number of bonds per unit area 

N = fN0 and Eq.(34) as 

 

                     〈𝜎〉 = 𝑁〈𝐹(𝛿 = 𝑟′)〉 = 𝑓𝑁0[∫ 𝐹(𝑟)𝑊(𝑟, 𝛿 = 𝑟′)𝑑𝑟
∞

0
]  . (35) 

 

The evaluation of the adhesive strength 〈𝜎〉 from Eq.(35) requires that an assessment of the 

fraction f of intact bonds be assessed experimentally and that 𝛿 = 𝑟′ be calculated for the 

bond separation distance 𝑟′ = 𝑟𝑚𝑎𝑥 = 𝑟0 + (1 𝜇⁄ )𝑙𝑛2 , corresponding to the maximum 

value of 𝐹(𝑟) = −𝑑𝑈 𝑑𝑟⁄   .  These assessments are discussed in Section IIIB for the case 

of aluminum-epoxy bonds.   

 

B. Scaling between the ultrasonic and physico-chemical models of interface bonding 

Eq.(35) shows that the tensile adhesive bond strength 〈𝜎〉 can be calculated in the 

physico-chemical model from the product of the number of intact bonds 𝑁 = 𝑓𝑁0 and the 

average interatomic binding force per bond 〈𝐹(𝛿 = 𝑟′)〉.  It is noted that the product 
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involves an assessment of the interface separation distance 𝑟′ = 𝛿 = 〈𝑟〉.  The maximum 

value of F(r) is obtained for an interatomic separation distance of  𝑟′ = 𝑟𝑚𝑎𝑥 = 𝛿𝑚𝑎𝑥 =

𝑟0 + (1 𝜇⁄ )𝑙𝑛2 .  Evaluation of (𝑟0 + (1 𝜇⁄ )𝑙𝑛2)  requires knowledge of the types of 

bonding between the adherend and the adhesive.  For definiteness, consider adhesive 

bonding between an aluminum adherent and an epoxy adhesive.  

The bonding between an aluminum adherent and an epoxy adhesive is dominated 

by hydrogen bonds that occur between alumina surfaces (resulting from exposure of 

aluminum to atmospheric moisture) and epoxy molecules.  The alumina surfaces are 

terminated by a monolayer of hydroxyl (OH) groups with an area density of roughly 1.25 

x 1019 OH m -2 [16].  The OH groups are strongly bound via Al-O bonds to the alumina and 

provide a hydrogen bond (H-bond) donor function for chemical bonding to H-bond 

receptor groups B in the epoxy.  The equilibrium separation distance r0 of the H--B bonds 

is roughly 1.7 x 10-10 m, the parameter  = 3.6 x 109 m-1, the dissociation energy U0 is of 

the order 4.93 x 10−20 J per bond, and the reduced mass mr=1.63 x 10−27 kg [16].  Thus, 

𝑟′ = 𝑟𝑚𝑎𝑥 = 𝛿𝑚𝑎𝑥 = 𝑟0 + (𝑙𝑛2 𝜇⁄ ) =  3.63 x 10-10 m.  From the relation  𝜈 =

(1 2𝜋)⁄ (𝑘 𝑚𝑟⁄ )1/2 the spring constant k is calculated to be k =1.3 N m−1.  The maximum 

average interatomic binding force per bond 〈𝐹〉𝑚𝑎𝑥 is calculated from Eqs.(31), (34), and 

the relation 〈𝐹〉 = −〈𝑑𝑈 𝑑𝑟⁄ 〉, using the value 𝛿 = 𝑟′ = 𝑟𝑚𝑎𝑥 = 3.63 x 10-10 m, to obtain 

〈𝐹〉𝑚𝑎𝑥 = 〈𝐹(𝛿 = 𝑟′)〉 = −3.74⁡𝑥10−11N. 

The maximum number of bond per unit area N0 can be assessed from the relation 

[11] 

               𝑁0 =
1

𝛼2
(
𝑀𝑟𝑒𝑝

𝑀𝑒𝑝𝑜𝑥
) (

𝜌𝑒𝑝𝑜𝑥𝑁𝐴

𝑀𝑟𝑒𝑝
)
2/3

   (36) 
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where Mepox = 3200 is the molecular weight of epoxy molecules, Mrep = 340 is the molecular 

weight of the repeat unit of the epoxy molecule, 𝜌𝑒𝑝𝑜𝑥 = 1.3. x 103 kg m-3 is the mass 

density of epoxy, NA = 6.02 x 1023 molecule/mole is Avogadro’s number, and 𝛼 is a factor 

to account for the interpenetration of epoxy molecular chains.  Assuming that 𝛼 = 0.05 

(corresponding to a moderate to high degree of molecular interpenetration) leads to the 

maximum bond density value 𝑁0 = 7.4 x 1017 m-2.  The value of 𝑁0 and the value k =1.3 N 

m−1, calculated above, lead to an assessment of the maximum interfacial spring stiffness 

constant (KP-C)max in the physico-chemical model as (KP-C)max = N0k = 9.6 x 1017 N m-3.  

The value of 𝑁0  and the value 〈𝐹(𝛿 = 𝑟′)〉 = −3.74⁡ × 10−11N for the interatomic bond 

force lead to the assessment of the maximum bond strength  〈𝜎〉𝑚𝑎𝑥 = 28 MPa.  This value 

is in very good agreement with the range (21–52) MPa typically measured for the tensile 

bond strengths of aluminum-epoxy bonding.  The larger values of adhesive bond strength 

correspond to surface treatments that promote greater molecular chain interpenetration in 

the adhesive, which lead to smaller values of  in Eq. (36) [17,18].  Treatments affecting 

the specificity of the adhesive functional groups to promote covalent bonding also increase 

the adhesive bond strength [17,18].   In view of the variety of treatments available that 

affect adhesive bonding the calculated value 〈𝜎〉𝑚𝑎𝑥 = 28 MPa is in quite good agreement 

with the results of experiment. 

Before addressing experimental measurements of the fraction of intact bonds f in 

the physico-chemical model, it is important to point out that the equations derived in 

Section II are an idealization of the adhesive interface based on continuum mechanics, 

where the maximum number of possible bonds per unit area of interface is considered to 

be infinite.  Perfect interface adhesion in such case corresponds to an infinite bond density 
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and results in an infinite interfacial spring stiffness constant Kab (i.e., that Kab = ∞).  For a 

totally fractured interface the bond density is zero and leads to Kab = 0.  Realistically, the 

maximum number N0 of possible bonds per unit area of interface in the physico-chemical 

model is limited by the finite dimensions of the bonded atomic pairs.  To relate the 

ultrasonic model given in Section II to the physico-chemical model of adhesive bond 

strength it is necessary to scale the value of the interfacial spring stiffness constant Kab in 

the ultrasonic model to the fraction of intact bonds f = N/N0 in the physico-chemical model 

and thus to the interfacial spring stiffness constant KP-C = Nk = fN0k for the physico-

chemical model.   

The scaling between the interfacial spring stiffness constant Kab in the ultrasonic 

model and the interfacial spring stiffness constant KP-C in the physico-chemical model can 

be accomplished by writing 

 

    𝐾𝑎𝑏 =
𝑓

1−𝑓
𝑁0𝑘 =

𝑓

1−𝑓
(𝐾𝑃−𝐶)𝑚𝑎𝑥 =

𝐾𝑃−𝐶

1−𝑓
   .  (37) 

 

where KP-C = Nk = fN0k = f (KP-C)max.  For complete fracture the fraction of intact bonds f 

= 0 in Eq.(37) and Kab = KP-C = 0.  With increasing f, Kab increases monotonically in 

Eq.(37), attaining the value Kab = ∞ for maximum bonding at f = 1, where the maximum 

value of KP-C is (KP-C)max = N0k, in agreement with the ultrasonic model.  Eq.(37) thus 

represents a realistically scaled mapping of the interfacial spring stiffness constant between 

the physico-chemical model and ultrasonic continuum model of adhesion.  The mapping 

allows a quantitative assessment of the adhesive bond strength from ultrasonic phase 

measurements.   
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IV. ULTRASONIC PHASE MEASUREMENTS AND ASSESSMENT OF ADHESIVE 

BOND STRENGTH 

 As noted in Section II, the assessment of the fraction of intact bonds f = N/N0 must 

be obtained experimentally.  One means of assessing 𝑓  is from measurements of the 

ultrasonic phase resulting from bonded surfaces.  Ultrasonic amplitude measurements can 

also be used, but phase measurements are considerably more accurate, since phase 

measurements are based on highly accurate frequency standards.  Ultrasonic phase-

measuring systems based on constant frequency pulse phase-locked loop (CFPPL) 

technology can yield phase measurements to parts in 109 [8].    

 To evaluate the effectiveness of the present model for the assessment of adhesive 

bond strength, it is necessary to focus only on the phase contributions from the bonded 

region.  Contributions from outside that region simply add terms readily calculated from 

knowledge of the thickness, ultrasonic velocity and attenuation of the adherends.  It is 

instructive to begin with the somewhat idealized case of identical adherends bonded with 

an adhesive of thickness L and having identically bonded adhesive-adherend interfaces 

such that K12 = K23 = K.  In such case |R21| = |R12| = |R23|, 21 = 23, |T21| = |T23|, and 21 

=12 = 23.  For definiteness, it is assumed that the adherends are aluminum alloy 6061 

(AA6061) and that the adhesive is epoxy.  The density of AA6061 is 2.68⁡𝑥⁡103 kg m-3 

and the velocity is 6.43⁡𝑥⁡103 m s-1.  The density of epoxy is 2.53⁡𝑥⁡103 kg m-3 and the 

velocity is 2.14⁡𝑥⁡103 m s-1.  An ultrasonic frequency of 10 MHz and an epoxy adhesive 

thickness 𝐿 = 7.6 x 10-5 m are assumed.  The reflected ultrasonic phase  is calculated from 



19 

 

Eq.(28).  A graph of the phase of the reflected ultrasonic wave is plotted in Fig.2 as a 

function of the interfacial spring constant K12 = K23 = K.  

                            

Fig.2.  Graph of the phase  of the ultrasonic wave reflected from the adherend-adhesive region plotted as a 

function of the interfacial spring constant K12 = K23 = K. 

 

  It is noted from Fig.2 that for an ultrasonic interfacial spring constant value of 

roughly 𝐾 = 3.5⁡𝑥⁡1014 N m-3 the reflected phase changes signs.  The maximum value of 

KP-C in the physico-chemical model for aluminum-epoxy bonding is calculated in Section 

IIIB to be (𝐾𝑃−𝐶)𝑚𝑎𝑥 = 𝑁0𝑘 = 9.6⁡𝑥⁡1017  N m-3.  Substituting (𝐾𝑃−𝐶)𝑚𝑎𝑥  and 𝐾𝑎𝑏 =

𝐾 = 3.5⁡𝑥⁡1014 N m-3 in Eq.(37) and solving for f yields the fraction of intact bonds 𝑓 =

3.6⁡𝑥⁡10−4.  The value 𝐾 = 𝑓𝑁0𝑘 = 3.5 x 1014 N m-3 thus corresponds to an adhesive 

strength of 〈𝜎〉 = 𝑓𝑁0〈𝐹〉𝑚𝑎𝑥 = 10 kPa, which is almost four orders of magnitude below 

the maximum adhesive strength calculated in Section IIIB of 〈𝜎〉𝑚𝑎𝑥 = 𝑁0〈𝐹〉𝑚𝑎𝑥 = 28 

MPa.  An adhesive strength of 10 kPa is effectively an adhesive bond failure.    

 It is important to note from Fig.2 that since the phase changes sign at 𝐾 =

3.5⁡𝑥⁡1014 N m-3, the relationship between  and K is single-valued.  This means that there 
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is no ambiguity in assessing the value of K from a measurement of the ultrasonic phase .  

Further, a measured negative value of the reflected phase means the adhesive bond has 

failed, since a negative value means that the bond strength is below 10 kPa.  Thus, ‘kissing 

bonds’ are detected as a negative phase. 

 The general procedure to assess the adhesive bond strength from a measurement of 

the ultrasonic phase  is to substitute the measured value of  in Eq.(28) and solve for the 

interfacial stiffness constant K.  The calculated value of K = Kab is then substituted in 

Eq.(37) and solved for the fraction of intact bonds f = N/N0.  The assessment of the bond 

strength is then calculated from the relation 〈𝜎〉 = 𝑓𝑁0〈𝐹〉𝑚𝑎𝑥 obtained from the physico-

chemical model.  The calculations leading to quantitative values of the bond strength 

require a detailed knowledge of the physical and dimensional properties of the adherend 

and adhesive, as well as the type of chemical bonds between the bonding atomic pairs.  It 

is noted that for large values of K, corresponding to strong adhesive strength, the rate of 

change in  with respect to K, d/dK, becomes increasingly smaller.  Since perfect bonding 

corresponds to K → ∞ such that f →1 and KP-C → (KP-C)max, the evaluation of the bond 

strength for the strongest bonds becomes more difficult to ascertain as K becomes ever 

larger.  However, the ability of CFPPLL-based ultrasonic instrumentation to measure phase 

to parts in 109 [8] allows state-of-the-art capability for such assessments.    

 It is assumed in obtaining Fig.2 that the two adherend-adhesive interfaces are 

identical such that the interfacial spring constants K12 = K23 = K.  Generally, this is not the 

case.  Fig.3 shows a graph of the reflected ultrasonic phase , Eq.(28), plotted as a function 

of K12 and K23.  It is seen that  depends dominantly on K12 with very little dependence on 

K23.  This means that measurements of the reflected ultrasonic phase primarily provide 
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information on the first adherend-adhesive interface encountered by the ultrasonic tone-

burst.  Information on the second adherend-adhesive interface requires that reflected phase 

measurements be obtained from tone-bursts incident from the opposite adherend.   

                    

Fig.3.  Graph of the phase  of the ultrasonic wave reflected from the adherend-adhesive region plotted as a 

function of the interfacial spring constants K12 and K23. 

 

V. CONCLUSION 

A model of ultrasonic tone-bursts incident on adherend-adhesive interfaces is 

developed for assessing the amplitude and phase of both reflected and transmitted waves.   

The model parameters include the ultrasonic frequency, the acoustic impedances of the 

adherends and the adhesive, and the interfacial stiffness constants of the adherend-adhesive 

interfaces.  The interfacial stiffness constants characterize the elastic properties of the 

interfacial bonds.  The ultrasonic model intrinsically assumes an idealized interface based 

on the continuum mechanics approximation, where the maximum number of possible 
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bonds per unit area of interface is considered to be infinite.  Perfect interface adhesion in 

such case corresponds to an infinite bond density and results in an infinite interfacial spring 

stiffness constant Kab.  For a totally fractured interface the bond density is zero and leads 

to a null value of Kab. 

  Realistically, the maximum number N0 of possible bonds per unit area of interface 

is limited by the finite dimensions of the bonded atomic pairs.  The limitation led 

previously to the development of the physico-chemical model of adhesive bonding [10,11].  

To relate the present ultrasonic model to the physico-chemical model of adhesive strength 

a scaling equation is introduced that links the interfacial spring stiffness constant Kab in the 

ultrasonic model to the fraction of intact bonds f = N/N0 (N = number of intact bonds) in 

the physico-chemical model and thus to the interfacial spring stiffness constant KP-C = fN0k 

(k = interatomic force constant) in in the physico-chemical model.  The link establishes the 

connection between ultrasonic measurements of amplitude and phase, and the interatomic 

bonding parameters in the physico-chemical model.  The link thus provides a means of 

calculating the tensile adhesive bond strength from knowledge of the types of bonds (e.g. 

H-bonds, covalent bonds, etc.) and the physical parameters of the bonds (such as bond 

dissociation energy, the equilibrium distance between bonded atomic pairs, and ‘bond 

hardness’ parameter). 

The present model is applied to the simulation assessment of the adhesive bond 

strength of two AA 6061 adherends bonded with an epoxy adhesive.  The simulation is 

obtained for the phase of a 10 MHz ultrasonic tone-burst reflected from the adherend-

adhesive interfaces.  It is shown that the phase changes sign for an ultrasonic interfacial 

stiffness constant 𝐾 = 𝐾𝑎𝑏 = 3.5 x 1014 N m-3, which corresponds to a bond strength of 10 
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kPa as assessed from the physico-chemical model. This is well below the maximum tensile 

bond strength of 28 MPa, corresponding to (𝐾𝑃−𝐶)𝑚𝑎𝑥 = 𝑁0𝑘 = 9.6⁡𝑥⁡1017 N m-3.  Above 

10 kPa the phase is positive and below it is negative.  It is also shown that measurements 

of the reflected ultrasonic phase primarily provide an assessment of the bond strength of 

the first adherend-adhesive interface encountered by the ultrasonic tone-burst.  An 

assessment of the second adherend-adhesive interface requires that reflected phase 

measurements be obtained from tone-bursts incident from the opposite adherend.                 

For large values of K the rate of change in  with respect to K becomes increasingly 

smaller.  Perfect adhesive bonding corresponds to 𝐾 → ∞ such that 𝑓 → 1 and 𝐾𝑃−𝐶 →

(𝐾𝑃−𝐶)𝑚𝑎𝑥 .  Thus, the quantitative evaluation of the adhesive bond strength for the 

strongest bonds becomes more difficult to ascertain as K becomes ever larger.  However, 

the difficulty is greatly mitigated by the state-of-the-art capability of CFPPLL-based 

ultrasonic instrumentation to measure phase to parts in 109 [8].   
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